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Exploring the energy landscape of model proteins: A metric criterion for the determination
of dynamical connectivity
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A method to reconstruct the energy landscape of small peptides is presented with reference to a two-
dimensional off-lattice model. The starting point is a statistical analysis of the configurational distances be-
tween generic minima and directly connected pairs (DCP). As the mutual distance of DCP is typically much
smaller than that of generic pairs, a metric criterion can be established to identify the great majority of DCP.
Advantages and limits of this approach are thoroughly analyzed for three different heteropolymeric chains. A
funnel-like structure of the energy landscape is found in all of the three cases, but the escape rates clearly
reveal that the native configuration is more easily accessible (and is significantly more stable) for the sequence

that is expected to behave as a real protein.
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I. INTRODUCTION

Several states of matter are characterized by a rich energy
landscape, which, in turn, hints at peculiar structural and
dynamical features. Supercooled liquids, glasses, atomic
clusters, and biomolecules [1] are typical examples of sys-
tems whose complex thermodynamic behavior can be traced
back to the intricate topological properties of the energy
landscape. The pioneering work by Stillinger and Weber on
“inherent” structures of liquids [2] revealed the importance
of investigating the stationary points of the potential energy
for characterizing their dynamical and thermodynamic prop-
erties. Similar approaches have been proposed and success-
fully applied to the identification of the structural-arrest tem-
perature in glasses [3] and supercooled liquids [4].

More recently, this kind of analysis has been extended to
the study of protein models [5-7]. They suggest that also the
folding process of a protein toward its native configuration
depends on the structure of its energy landscape. This has
been found to possess a funnel-like shape: the native con-
figuration is located inside the so-called native valley at the
bottom of the funnel [8].

Below the folding temperature, the evolution from a coil
state to the native configuration is determined by the propen-
sity of the protein to enter the relatively small fraction of
states composing the native valley without having to visit the
entire phase space. In a statistical sense, the folding process
can be viewed as a weighted sampling mechanism which
favors specific intermediate configurations. They correspond
to assembling the building blocks which eventually consti-
tute the native topology. Well above the folding temperature,
no marked difference exists among the various states and the
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protein spends most of the time jumping between different
random coil configurations.

In the absence of external forces, only thermal fluctua-
tions can drive the protein dynamics through different re-
gions of the energy landscape. In particular, below the fold-
ing temperature, the protein is expected to evolve mainly
inside the native valley. Nonetheless, large deviations from
the native configuration cannot be avoided, but they are both
rare and very short lived. This scenario was confirmed by
simulations performed in a two-dimensional (2D) off-lattice
model [9]. A more detailed analysis of the model [10] re-
vealed that the protein dynamics can viewed as a sequence of
jumps between pairs of minima separated by one saddle, that
we call directly connected pairs (DCP). Each jump is a ther-
mally activated process: the protein performs random oscil-
lations in the basin of a local minimum until a sufficiently
large thermal fluctuation allows it to overtake the energy
barrier separating the minimum from a neighboring one. In a
high-dimensional space, the transition rate can be computed
as the product of the Arrhenius factor times an entropic
weight which depends on the DCP and on the saddle curva-
tures (see Sec. IV). In other words, the relevant information
about the protein dynamics can be obtained from the knowl-
edge of the DCP and of the corresponding saddles. However,
the reconstruction of the energy landscape is a very difficult
task to be accomplished in practice. Indeed, the identification
of DCP by a systematic exploration of the entire set of the N
identified minima requires exploring N? pairs, which is al-
ready on the order of 10° for the partial database generated
(see the Appendix for a description of the algorithm) in the
relatively small polypeptidic chains investigated in this paper
(see Sec. II). It is, therefore, crucial to develop effective
strategies for identifying DCP within the set of all, a priori
possible, candidates. This is the main issue addressed in this
paper.

It is reasonable to conjecture that the distance separating
DCP is typically smaller than that between generic pairs of
minima. It is, therefore, tempting to restrict the analysis to
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those pairs whose mutual distance is smaller than some pre-
scribed threshold. However, whether this approach effec-
tively works may depend on several factors, one of which is
the adopted definition of distance. For this reason, in Sec. III,
we introduce and compare different conformational dis-
tances. It turns out that the bond-angle distance, defined by
the absolute-value norm is the one that makes the implemen-
tation of such a criterion most accurate in the identification
of DCP. The price one has to pay is that, unavoidably, all
DCP characterized by a distance larger than the given thresh-
old are missed. The detailed analysis of the energy landscape
described in Sec. IV indicates that the average distance be-
tween DCP is larger for minima that are closer to the native
topology. Accordingly, the computational advantage guaran-
teed by the choice of a relatively small threshold could be
frustrated by the loss of important connections located in the
native valley. For this reason, we argue that the distance
criterion has to be complemented by a systematic search of
all DCP involving minima in the native valley, a much more
accessible task, given the limited number of such minima
(for an operative definition of the native valley, see Sec. IV).

II. THE MODEL

The model studied in this paper is a modified version of
the 2D off-lattice model introduced by Stillinger er al. [11]
and already investigated in Ref. [9]. It consists of a chain of
L point-like monomers mimicking the residues of a polypep-
tidic chain. For the sake of simplicity, only two types of
residues are considered: hydrophobic (H) and polar (P) ones.
Any chain is unambiguously identified by a sequence of bi-
nary variables {&} (i=1,...,L), where &==+1 corresponds to
H and P residues, respectively. The intramolecular potential
is composed of three terms: a stiff nearest-neighbor harmonic
potential V| intended to maintain the bond distance almost
constant, a three-body interaction V, which accounts for the
bending energy, and a long-range Lennard-Jones interaction
Vs acting on all pairs i, j such that |i—j|>1

2
Vl(ri,i+1) = a'(ri,i+l -710)”,

1—cos 6
V,(0)=—,
2( z) 16
1 _cij
Vs(”i,j)=ﬁ— 6 (1)

Here, r; ; is the distance between the ith and the jth monomer
and 6; is the bond angle at the ith monomer. The parameters
a=20 and ro=1 (both expressed in adimensional arbitrary
units) fix the strength of the harmonic force and the equilib-
rium distance between subsequent monomers (which, in real
proteins, is on the order of a few angstroms). The value of «
is chosen to ensure a value for V; much larger than the other
terms of potential (1) in order to reproduce the stiffness of
the protein backbone. V; is the only term of the potential
energy which depends on the nature of the monomers: the
parameters c,-’jzé(l +§&+&+5&¢) are chosen in such a way
that the interaction is attractive if both residues are either
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hydrophobic or polar (c; ;=1 and 1/2, respectively), while it
is repulsive if the residues belong to different species
(c;j==1/2).

Accordingly, the Hamiltonian of the system reads

L [)2 +p2 L-1 L-1
H=, = 5 D> Vi(ri i) + > Va(6)
i=1 i=1 i=2
L2 L
+ E E V3(rija§i7§j)’ (2)
i=1 j=i+2

where, for the sake of simplicity, all monomers are assumed
to have the same unitary mass and the momenta are defined
as (p,;,py,) = (X;,y;). Despite its simplicity, this toy model of
a heteropolymer does reproduce the expected properties of
polypeptidic chains and is thus very useful for testing dy-
namical and statistical indicators. For instance, accurate
Monte-Carlo simulations, performed by employing innova-
tive schemes [12], have revealed that, in analogy with real
proteins, only a few sequences systematically fold onto the
same native structure: this is why they have been named
“good folders” [13,14]. Such studies have been confirmed
and complemented by direct molecular dynamics simulations
[9].

In this paper, we limit ourselves to investigating the
three following sequences of 20 monomers, (i) [SO] a
homopolymer composed of 20 H residues; (i)
[S1]=[HHHP HHHP HHHP PHHP PHHH] a sequence that
has been identified as a good folder in [14]; (iii)
[S2]=[PPPH HPHH HHHH HHHP HHPH] a randomly
generated sequence that has been identified as a bad folder
in [9].

These sequences have been chosen because they represent
the three classes of different folding behaviors observed in
this model. The main thermodynamic features of all of them
can be summarized with reference to three different transi-
tion temperatures [10]. Decreasing the temperature from
high values, one first encounters the temperature 7,4 below
which the sequence is typically found in a collapsed configu-
ration, rather than in a random-coil one [15]. Then, one finds
the so-called folding temperature 7, below which the het-
eropolymer stays predominantly in the native valley. Finally,
at even lower temperatures, one finds 7,: this is the glass-
transition temperature, below which a structural arrest of the
system occurs.

In the following, we aim at a deeper understanding of the
folding process by investigating directly the structure of the
energy landscape of all these sequences.

III. ANALYSIS OF THE ENERGY LANDSCAPE

As pointed out in the introduction, the main problem for
reconstructing the energy landscape amounts to finding DCP
and the corresponding saddles of the potential energy
V=V,+V,+V; [see Eq. (2)]. An exhaustive search of DCP
among all pairs of minima rapidly becomes unfeasible with
increasing the chain length L, due to the exponential increase
of the number of minima with L itself [1]. Since the total
number of DCP is a rather small fraction of all possible pairs
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TABLE 1. Number of minima in the whole database and in the
first and second shell. Number of investigated pairs and number of
DCP found. Data have been reported for all the three examined
sequences.

SO S1 S2
Total number of 23X10° 7.2x10* 6.4x10*
minima
Number of minima 64 50 49
in the first shell
Number of minima 1181 465 348
in the second shell
Number of 66 470 5883 8670
minima below T
Number of 9.1x10° 0.94 % 10° 1.3%10°
investigated pairs
Number of 84 990 10470 14 356

connected pairs

(see, e.g., Table 1), it would be very helpful finding an effec-
tive criterion to restrict the search of potentially directly con-
nected minima. A priori, the distance seems to be the right
indicator to discriminate between connected and not-
contiguous pairs of minima. In this section, we investigate
several definitions of distance with the goal of identifying the
most appropriate one to identify DCP.

As a first candidate, we introduce the generalized angular
distance é(eq)(C 1,C,) between configurations C; and C,,

| L-1 /g
5(;)((31,C2) = (nz |0(i;cl) - 0(i§cz)|q s (3)
T 4=

where 6(i,C) is the ith bond angle of the configuration C.
Notice that this angular distance is very sensitive to local
fluctuations along the chain. A generalized distance which
depends more on the global than on the local structure of a
configuration is

) L 1/q
89¢,,c =<— r(i,j;Cy) —r(i,j;C q) ,
( (C1,Cy) L(L_l)ig-ll (i,j;Cy) = r(i,j 2)|

(4)

where r(i,j;C) is the intrabead distance between the ith and
Jjth monomers of the configuration C. This distance is related
to the y indicator, previously employed in the analysis of the
folding dynamics in on-lattice and off-lattice models of het-
eropolymers in 2D and three dimensions (3D) [9,16]. For
g=1, 2, and +%, both definitions of generalized distances
reduce to the standard absolute-value, Euclidean, and maxi-
mum norms, respectively. Such distances have been com-
puted for all the pairs of minima in the databases of the
sequences SO, S1, and S2. The algorithm used to generate the
databases is described in the Appendix. We want to point out
that any numerical procedure, including ours, cannot guaran-
tee the identification of all minima and saddles in the energy
landscape. Nonetheless, we have independently verified that
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FIG. 1. Probability density of angular distances 68) for all the
pairs of minima, P, (dashed line), and for DCP, P,. (solid line), for
the sequences SO (a) and S1 (b) and S2 (c).

the algorithm allows obtaining at least a very accurate de-
scription of the native valley.

Then, we have computed the probability densities of the
generalized distances between generic [P(8)] and directly
connected [ P.(5)] pairs of minima. In all cases, P has a bell
shape with a maximum close to 1, while P, is sharply peaked
at much smaller values (see, e.g., Fig. 1, where P(é(gl)) and
Pc(é(el)) are plotted for the sequences SO, S1, and S2). This
confirms the naive idea that DCP are typically much closer
than randomly chosen pairs of minima.

A qualitatively similar difference between P and P. is
observed also for different choices of g as well as for the
global distance é(r(’). In order to identify the most appropriate
value of ¢, it is convenient to introduce the integrated frac-
tion R(9) of pairs of minima whose distance is smaller than &
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FIG. 2. Integrated probability density R, versus R for the angu-

lar 8¢ (solid lines) and global &, (dashed lines) distances. The data

refer to the sequence S1 and to the absolute value (a) and maximum
(b) norms.

)
R(J) =J P(x)dx (5)
(

)

and, equivalently,
5
R.(9) = J P (x)dx, (6)
0

relative to DCP. Upon considering & as a dummy variable, it
is possible to plot R, versus R. A fast convergence of R, to 1
means that almost all DCP can be already identified by lim-
iting the search to relatively close pairs of minima. The data
reported in Fig. 2 for the sequence S1 indeed reveal that such
a fast convergence of R, is achieved for both angular and
global distances. However, regardless of the chosen distance,
the absolute value norm (g=1) represents a more effective
indicator of connectivity between DCP than the maximum
norm (g=). On the other hand, Fig. 2(a) shows that for
large R, 59) performs slightly better than 5(91), which con-
versely is definitely more effective for small R. This is why
in what follows we limit our analysis to 5(01).

In order to clarify the role of the parameter ¢, in Figs. 3
and 4, we have plotted R, versus R for different values of this
parameter. There we see that, upon decreasing g from o
down to 1, R, exhibits an increasingly fast saturation, while
the opposite is observed when ¢ is further decreased below 1.
The bad performance observed at high ¢ values has a quite
intuitive explanation: in that limit, the norm reduces to the
maximum norm and the slow growth of R, tells us that dis-
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FIG. 3. Integrated probability density R. versus R for the angu-
lar distance for various norms for the sequence SO. Continuous lines
correspond to ¢<1 (¢=0.01, ¢=0.2, ¢=0.5, and ¢=0.75, going
from the thinnest to the tickest line, respectively). The dashed line
corresponds to g=1 (norm of the absolute value). The dotted lines
correspond g>1 (¢=2, g=5, and g=%°, going from the thickest to
the thinnest line, respectively).

tances between DCP are not uniformly small along all direc-
tions: DCP may significantly differ along specific directions
in spite of being “on the average” much closer than generic
pairs of minima. The relatively bad performance observed
for g— 0 has a complementary explanation. In that limit, the
average distance is strongly biased by small differences 66 or
or, whose occasional occurrence may induce us to classify as
“close,” configurations that are significantly different instead.
In all configurations, we have investigated, it turns out that
g=1 is the best compromise between the above two effects.
Having established that g=1 is the best choice, from now on,

P —
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" H n 1 n 1 2 1 "
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FIG. 4. Integrated probability density R, versus R for the angu-
lar distance for various norms for the sequences S1 (a) and S2 (b).
The notations are the same as in Fig. 3.
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FIG. 5. The ratio p between DCP and all pairs up to distance g
(continuous line) compared with R.(5g) (dashed line) for the three
analyzed sequences, SO (a), S1 (b), and S2 (c).

we limit ourselves to considering that value and drop the
superscript (1) in the definition of the distance.

In practice, since it is eventually necessary to identify a
threshold distance 5;, it is convenient to look also at the
dependence of R. on &, and to introduce

Rc(‘sﬁ)
p(5p) R(5,) .
From Fig. 5, we see that 85=0.5 is a good choice, since
p(0.5)~0(1072), while R.(0.5)~99%. Even reducing the
threshold value to 5§=0.2, a large fraction of DCP are still
recovered [R.(0.2) ~90% ].

These results indicate that if one restricts the search of
DCP to the set of minima whose distance is smaller than a
prescribed threshold &), one can reduce significantly the
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FIG. 6. Average connection length between the minima of the
ith and (i—1)th shell for the three sequences SO (triangles), Sl
(circles), and S2 (filled diamonds).

most time-consuming part of the systematic search algo-
rithm, which amounts to testing whether a generic pair of
minima is separated by a single saddle.

The drawback is that for any choice of &y, those DCP
whose mutual distance is anomalously large are going to be
missed. In Sec. IV, we analyze the energy landscape with the
main goal of concluding whether such a component is of
some relevance in the overall reconstruction of the energy
landscape.

IV. A CLOSER INSPECTION OF THE ENERGY
LANDSCAPE

A faithful reconstruction of the energy landscape requires
a sufficiently large database of stationary points, i.e., minima
and saddles. The procedure described in the Appendix is
quite reliable in this respect, but it is also computationally
very time-consuming as already stated. In Sec. III, we have
seen that a large fraction of DCP can be obtained by adopting
a suitable metric criterion. However, it is not a priori clear
whether the long-distance tail of P, is qualitatively irrelevant
too.

In order to shed some light on this question, we have
divided the minima into “shells”: the nth shell is defined as
the collection of all minima which are separated from the
native configuration by at least n saddles. The identification
of the minima belonging to each shell can be achieved recur-
sively: (i) the Oth shell coincides with native configuration;
(ii) a minimum C,, directly connected to a minimimum C, of
the ith shell, is identified as part of the (i+1)st shell if C,
does not belong to a shell of order j=<i.

In Fig. 6, we report the average value &, of the distance
between DCP belonging to consecutive shells for all of the
three sequences. This figure indicates that the interminimum
distance grows in the vicinity of the native configuration.
The average distance (5, between DCP lying inside the
same shell exhibits the same behavior. Finally, this rarefied
density of minima in the vicinity of the native configuration
is confirmed also by plotting the mutual distance versus the
actual distance from the native configuration (native dis-

051929-5



BONGINI et al.

0.3 : : , ,
5
02ko ]
-
keed v
%=} . * .
v v
L S
0.1k °
1 1
% 0.4 0.8 12

8,aNe)

FIG. 7. The average distance of minima from their connected set
versus their native distance for the sequence SO (triangles), Sl
(circles), and S2 (filled diamonds). The data are averaged also over
intervals of length /=0.01 along the horizontal axis.

tance). In this case, in order to smoothen the wild pair-to-pair
fluctuations, a coarse graining has been performed by aver-
aging over bins of width 0.01 along the §, axis (see Fig. 7).

Altogether, the significant increase of the average distance
close to the native valley indicates that some of the DCP that
are missed by the metric criterion discussed in Sec. III lie in
the most relevant region for the characterization of the fold-
ing and/or unfolding processes. However, considering the
limited number of minima in the native valley, such a diffi-
culty can be easily overcome by complementing the overall
application of the metric criterion with an extensive compari-
son of such minima with all configurations in the database:
the additional cost in terms of the computing time is indeed
a minor one.

The increased distance between neighboring minima hints
at possibly deeper valleys and is, in turn, suggestive of the
presence of a funnel in the energy landscape, a structure that
is typically expected to appear in true proteins [8]. However,
we find this scenario in all of the three sequences analyzed in
this paper, including the homopolymer SO which cannot be
certainly considered a reasonable model for a protein. In or-
der to further clarify this point, we have computed the escape
rates from the single valleys. Given any two directly con-
nected minima C; and C, characterized by the potential en-
ergies V; and V, (V,<V,), the escape rate from the mini-
mum C={C,,C,} through the saddle C, (with potential energy
V,) is given by

TTE oY
i= W,
o= —"— expy— < 1 (7)

A exp} - —=
Wny;l_l w(ll) kgT

This formula, proposed by Langer [17,18], is obtained by
considering the harmonic approximation of the potential in
the vicinity of C,, C,, and C,. The w(ci)’s are the L'=2L-3
nonzero frequencies of the minimum C (a)(ci)= —A(Ci), where
A(ci) is the ith negative eigenvalue of the Hessian of the po-
tential energy V). Analogously, cu(i)’s are the L' —1 nonzero
frequencies of the saddle (those corresponding to the stable
directions), while wj is associated with the only expanding
direction. Finally, y is the dissipation rate [19], while the
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Arrhenius exponential factor depends on the height of the
barrier, W=V~ V| ,, normalized to the reduced temperature
KT, Kp being the Boltzmann constant.

The above expression has been shown to reproduce rea-
sonably well the numerically obtained escape rates for het-
eropolymers in 2D at moderate temperatures for 7.5 T, [10].
Accordingly, in that regime, both the folding and the unfold-
ing dynamics toward and from the native configuration are
driven by thermal activation processes, which determine the
transitions between DCP. Small I' values suggest that the
heteropolymer may be trapped into some local valley far
from the native configuration. Equation (7) shows explicitly
that in high-dimensional spaces, the escape rate does not
simply depend on the energy barriers but also on entropic
factors, which depend on geometrical features of basins of
attractions of the stationary configurations in the energy
landscape.

In Fig. 8, we have plotted the rates I'; as a function of &,
for the three sequences at =T, and y=1 (since past simu-
lations indicate that the effective value of vy is the same at
least in the whole native valley, there is no need to know it
when a comparative analysis is being carried out). There we
notice a striking difference between SO and S1 at large dis-
tances: actually the escape rates of SO are two orders of
magnitude smaller than those of S1. Moreover, I'c, ~O(1)
almost in the whole range of distances d, for S1, indicating
that no trapping is expected in the shallower minima, while it
exhibits an almost exponential decrease for SO. An interme-
diate situation is observed for S2 at large distances. As a
result, we see that a true funnel-like structure is markedly
present only in the energy landscape of the sequence S1, that
was indeed already identified as a good folder by looking at
different indicators [9,13]. A more detailed analysis shows
that the Arrhenius factor in (7) tends to decrease with &, It is
worth stressing that the entropic factors counterbalance this
tendency in S1 for both I';’s over a wide range of values of
Sy [see Fig. 8(b)]. A similar effect is observed only for I' in
S2.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we have analyzed the structure of the energy
landscape of a 2D off-lattice model of a polypeptidic chain
and found that the relative closeness between neighboring
minima can be exploited to implement an effective algorithm
to identify directly connected minima. In order to put the
analysis on firm quantitative grounds, we have tested several
definitions of distance between configurations, finding that
the best performances are obtained for the angular distance
6(91) [see Eq. (3)]. In fact, the 5(01) distances corresponding to
DCP are more sharply concentrated at small values than for
all other definitions of distances. In particular, we have found
that restricting the systematic search to all pairs of minima
whose distance is smaller than 6(01)*:0.5, one can recover
almost 99% of all DCP [20-22].

The drawback of the approach we are proposing is that a
tiny fraction of DCP is unavoidably missed, but the conse-
quences are not a priori clear. Since our analysis of the na-
tive valley has shown that minima are more rarefied in the
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FIG. 8. Escape rates (7) versus the angular distance ¢ for each
DCP for sequence SO (a) and S1 (b) and S2 (c) at a temperature
T=T; (namely, 7/=0.044 for SO and S2, 7,=0.061 for S1). The
filled circles refer to the transition rates FCI, while the empty circles
to FCZ'

vicinity of the native configuration (see Fig. 7), we conclude
that it is wise to complement the above metric criterion with
an extensive search limited to the minima of the native val-
ley. It is now important to verify to what extent such a sce-
nario extends to more realistic 3D systems, where the imple-
mentation of effective algorithms to reconstruct the energy
landscape is even more crucial than in 2D. Furthermore, im-
portant hints about the true relevance of missing links in a
connectivity graph will come after imposing a dynamics on
the graph itself by adding the activation rates I' relative to
the transitions between directly connected minima. By com-
paring the resulting evolution with that of the original sys-
tem, one can in particular determine the minimal fraction of
DCP that is necessary to identify for a meaningful recon-
struction of the folding process.
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Finally, in order to test how the observed rarefied density
of minima in the vicinity of the native configuration is con-
nected to the presence of a true funnel-like structure, we
have computed the activation rate I" inside the native valley.
It turns out that moving away from the native configuration,
while in the homopolymer I" decreases very rapidly, it stays
almost constant in the sequence S1, previously identified as a
good folder by other means. This is a clear indication that the
homopolymer can be trapped in several minima far from the
minimal energy state, while an accessible native valley does
exist for S1.

ACKNOWLEDGMENTS

We acknowledge CINECA in Bologna and INFM for pro-
viding us access to the Beowulf Linux cluster under the
Grant “Iniziativa Calcolo Parallelo.” This work has been par-
tially supported by a grant of the Ente Cassa di Risparmio di
Firenze, Italy, by the European Community via the STREP
project EMBIO (NEST Contract No. 12835) and under the
Italian FIRB Project RBAUOIBZJX “Dynamical and statis-
tical analysis of biological microsystems.” We also want to
thank Dr. M. Riccardi for useful discussions and suggestions.

APPENDIX

The database containing the minima of a model sequence
can be used to determine the first-order saddles directly con-
necting neighboring minima. The method we propose to use
to accomplish this goal is based on two different algorithms
to solve the following two problems: (i) Given two minima
C, and C, and two configurations P; and P, belonging to
their basins of attraction, one wants to determine two con-
figurations Q; and Q, on the segment P, P, arbitrarily close
to the ridge dividing the two basins and lying on its opposite
sides; (ii) given Q; and Q,, as defined above, one wants to
apply an iterative procedure, leading the two points to con-
verge on the saddle.

The procedure is here described in more details: (1) Given
Q,=P; and Q,=P,, an intermediate configuration C is de-
fined by setting its bond angles equal to the average of the
corresponding angles of Q; and Q,. (2) A steepest descent
procedure is applied to C until a minimum C,, is reached. (3a)
If C,, coincides with C,; (C,), we replace Q; (Q,) with C and
repeat the step (2) until the Euclidean distance dg(Q;,Q,)
between Q; and Q, becomes smaller than a given threshold
é. (3b) If C,, differs from both C; and C,, we assume that the
basins of attraction of the two minima are not directly con-
nected (i.e., C; and C, are not neighbors) and C,, is added to
the minima database, provided it is not already included. (3c)
If dp(Q,, Q,) < 8, we conclude they are close enough to the
ridge (i.e., the stable manifold separating the basins of attrac-
tion of C; and C,) and pass to item (4). (4) We let Q; and Q,
evolve in time according to a steepest descent relaxation un-
til dg[ Q,(1), Q,(r)] becomes larger than & and go back to (1),
identifying P, with Q,(¢) and P, with Q,(z). (5) When, dur-
ing the steepest descent, the gradient of the potential both in
Q, and Q, becomes smaller than another given threshold,
we assume Q; and Q, to be close enough to a first-order
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saddle and refine the configuration by means of a Newton’s
algorithm.

It must be stressed that this algorithm not only allows us
to find first-order saddles, but also enriches the number of
known minima. The saddle-searching strategy here proposed
can then be viewed as an “all purpose” method suitable for a
complete exploration of all the features of the energy land-
scape relevant for protein dynamics.

The data reported in this paper were obtained by applying
the algorithm to an initial database of minima determined by
the method described in Ref. [10]. It amounts to performing
a high-temperature (typically above 7) Langevin dynamics,
when the system is expected to visit a large portion of the
accessible phase space. The resulting trajectory is then
sampled to pinpoint a series of configurations, which are
afterward relaxed according to a steepest descent dynamics
and finally refined by means of a standard Newton’s method.
This procedure was used for identifying a small database of
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50-100 collapsed states for each of the three sequences de-
scribed in Sec. II.

All possible pairs in these initial minima databases were
then searched for DCP by means of our saddle-finding algo-
rithm. The new minima found during each run of the algo-
rithm on all possible pairs were stored in the database to be
investigated in successive runs. Actually, the number of pairs
of minima grows much faster than the number of pairs in-
vestigated, thus making impossible a complete analysis. The
number of minima and saddles that were identified after
three runs is reported in Table I.

In order to perform a complete search of all DCP at least
in a restricted set of minima, we have selected all configura-
tions of energy lower than V=V +LT. In this restricted
database, all pairs of minima characterized by an angular
distance smaller than 0.5 were investigated. The total number
of saddles found by this procedure is reported in Table I.
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